Mathematik in den Naturwissenschaften Leipzig Quasiconvex relaxation of multidimensional control problems with integrands f ( t
نویسنده
چکیده
We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original problem, and admits a global minimizer. As an application, we provide existence theorems for the image registration problem with convex and polyconvex regularization terms.
منابع مشابه
Mathematik in den Naturwissenschaften Leipzig Relaxation of three solenoidal wells and characterization of three - phase H - measures
We study the problem of characterizing quasiconvex hulls for three “solenoidal” (divergence free) wells in dimension three when the wells are pairwise incompatible. A full characterization is achieved by combining certain ideas based on Šverák’s example of a “nontrivial” quasiconvex function and on Müller’s wavelet expansions estimates in terms of the Riesz transform. As a by-product, we obtain...
متن کاملF Ur Mathematik in Den Naturwissenschaften Leipzig Quasiconvex Hulls in Symmetric Matrices Quasiconvex Hulls in Symmetric Matrices
We analyze the semiconvex hulls of the subset K in symmetric matrices given by K = fF 2 M 22 : F T = F; jF 11 j = a; jF 12 j = b; jF 22 j = cg that was rst considered by Dacorogna&Tanteri Commun. in PDEs 2001]. We obtain explicit formulae for the polyconvex, the quasiconvex, and the rank-one convex hull for ac ? b 2 0 and show in particular that the quasiconvex and the polyconvex hull are diier...
متن کاملfür Mathematik in den Naturwissenschaften Leipzig Wave Propagation Problems treated with Convolution Quadrature and BEM
متن کامل
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008